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Chapter 1

Introduction

This thesis is about the automatic acquisition of a particular kind of lexical knowledge, namely

the knowledge of which noun senses can fill the argument slots of predicates. Knowledge of this

kind is closely related to the classical notion of selectional restrictions (Katz and Fodor 1964)

and selectional preferences (Wilks 1975; Resnik 1993a). However, there is a difference, in that

selectional restrictions (and preferences) are usually expressed as constraints on the semantic class

of an argument; a much used example is that the verb drink constrains its object to be a kind of

liquid (or the verb
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This basic approach can be applied to other problems, such as anaphora resolution and word

sense disambiguation. Consider the problem of determining the referent of it in the following

sentence, taken from Wilks 1975:

(1.3) I bought the wine, sat on a rock and drank it.
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1.2 Using probabilities to represent preferences

Resnik (1993a) argues that the constraints a predicate places on its arguments are not Boolean

constraints, as in the classical account of selectional restrictions (Katz and Fodor 1964), but that

the constraints are satisfied to a certain degree. (Resnik cites McCawley (1968) and Fodor (1977)

as earlier critics of Katz and Fodor’s theory.) We follow Resnik in modelling the constraints as

graded preferences, and, in line with other recent work in this area (Ribas 1995b; Li and Abe

1998; McCarthy 2000; Wagner 2000), probabilities are used to encode the preferences. An impor-

tant question is whether the preference measure should define a probability distribution over the

possible arguments of a predicate.

Resnik’s measure of selectional preference, which he calls ‘selectional association,’ is defined

in terms of probabilities, but the measure does not define a probability distribution over the pos-

sible arguments of a predicate; the values for selectional association need not lie between zero

and one, and do not sum to one over the possible arguments. This is also true of a number of

related measures in the literature, such as the chi-squared statistic (Kilgarriff 1996), likelihood

ratio statistics (Dunning 1993) and mutual information (Church and Hanks 1990). Aside from the

question of whether these measures are appropriate for use in corpus-based linguistics (Dunning

1993), they all suffer from a limitation.

The limitation arises when determining the ‘semantic plaus







Chapter 2

Previous Work

This chapter is divided into two sections; one section describes work from those areas of lexical

acquisition that are of particular relevance to this thesis, and the other section describes previous

approaches to structural disambiguation and parse selection. These areas of application are con-

sidered because the problems of structural disambiguation and parse selection are dealt with in

Chapters 5 and 6.

The knowledge acquisition section focuses on selectional preferences, describing in detail

those approaches that have used WordNet and showing how they relate to the class-based estima-

tion method described in Chapter 3. We also describe some approaches to automatic clustering,

which is an important alternative to using a man-made hierarchy for generalisation, and also col-

location extraction, which has used statistics that are used in Chapters 3 and 4. Finally, a number

of smoothing techniques for probability estimation are described; this work is relevant because the

class-based estimation method described in Chapter 3 can be thought of as performing a kind of

smoothing.

The applications section focuses on those approaches to structural disambiguation and parse

selection that have used knowledge similar to lexical sense preferences; this includes much of the

recent work on resolving PP-attachment ambiguities and statistical parsing, where there has been

a move towards probability models based on lexical dependencies.

2.1 Lexical knowledge acquisition

The role of the lexicon has taken on increasing importance in recent years, both from a theo-
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arguments, but rather has a preferred kind of argument. However, Wilks distanced himself from

a probabilistic treatment of preferences: it is still the case that an individual preference is either

satisfied or it is not, as with selectional restrictions. The difference is that an interpretation of

a sentence can be preferred, even if individual preferences are violated, as long as there is no

alternative interpretation with less violations.

Resnik (1993a) took the notion of preference one step further, by suggesting that preference

should be measured on a continuous scale. Resnik uses the fol
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Resnik’s model of selectional preference

The parts of Resnik’s work (1993a, 1993b, 1996, 1997, 1998, 1999a, 1999b) that are most relevant

for this thesis are his solutions to the following questions:

1. How can a probability distribution over the WordNet hierarchy be defined?2

2. How can we measure the extent to which an argument satisfies the preferences of a predi-

cate?

Each question will be dealt with in turn.

Resnik defines his probability model in terms of classes (where class has the interpretation

given above). Let C = fc1;c2; : : : ;ck g be the set of classes in WordNet, where k is the number of

concepts (so that each concept has a corresponding class). Resnik places the following constraints

on any probability distribution over C:3

if ci is-a-kind-of c j then p(c j)� p(ci) (2.3)

∑k
i=1 p(ci) = 1 (2.4)

Equation 2.3 agrees with the intuition that the probability of a class increases with the level of

abstraction. (Although note that the probability corresponding to a node in the hierarchy is not

defined in terms of the sum of the probabilities of the children.) Equation 2.4 is required by

Resnik because he defines a random variable ranging over all the classes, and defines information-

theoretic functions of that random variable such as entropy.

Resnik’s aim is to model the fact that some verbs select more strongly for their arguments than

others. For example, eat selects more strongly for its direct object than find. Resnik’s approach

is based on the fact that, for strongly selecting verbs, the probability of a class conditional on

the verb, p(cjv), is likely to differ largely from the unconditional probability, p(c). From an
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A difficulty with using selectional association in an application is that the arguments are likely

to be nouns, rather than classes, and so an appropriate class has to be chosen for the noun. This

problem has two dimensions, since a noun can have more than one sense, but can also be repre-
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BEVERAGE, FOOD, LIQUID, FLUID, : : : , ENTITY. Each of these classes would receive a count of

1=21 for each instance of wine in the data. Note that this method of class estimation is unusual
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(relative to the entire data size and the number of words), it generalizes them into a

class. When the differences are especially noticeable (relative to the entire data size

and the number of the words), on the other hand, it stops generalization at that level.

As we shall see, a similar approach to generalization is taken in this thesis (but not using MDL).

One of the problems with this generalization approach is tha
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considering. The first modification is based on the following observation: that removing parts of

the hierarchy based on the nouns that occur in the data can result in large parts being excised.

For example, if entity appeared in the data, a large proportion of the complete hierarchy would

be removed, namely that part of the hierarchy dominated by hentityi. McCarthy’s alternative

solution is to create new leaf nodes for each internal node in the hierarchy; for example, the synset

for the concept hentityi would be represented at a new leaf node having the internal hentityi

node as a parent. This modification results in all the nouns in the hierarchy being represented at

leaf nodes. Counts for nouns are distributed initially at leaf nodes and then ‘passed up’ to internal

nodes representing the classes.

McCarthy’s response to the DAG problem is to leave the hierarchy as a DAG and argue that,

since only around 1% of the nodes in WordNet have more than one parent, the resulting tree cut

models are unlikely to differ much from the tree case. McCarthy also notes that the majority

of cases of multiple inheritance occur low down in the hierar
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each HMM remains the same, but the values of the probabilities vary.

To give an example, consider how the noun roll is generated for the object position of eat. In

fact, since roll has more than one sense in WordNet, there are numerous paths through WordNet

that generate the noun, but let us assume that the noun is generated via the food sense. The

hypernyms of the food sense of roll are as follows: hbreadi, hbaked goodi, hfoodstuffi, hfoodi,

hsubstanei, hobjeti, hentityi. First, a child of the root of the hierarchy is chosen, in this

case the hentityi node, according to the transition probabilities associated with the root. Then,

the concept hobjeti is chosen, according to the transition probabilities associated with hentityi
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COGNITION

ESSENCE FLESH FRUIT BREAD DAIRY

FOOD

idea meat bagel cheeseapple

true

Figure 2.2: Example Bayesian network

variable, which can be in one of two states, true or false. A synset node has the value true if the

concept represented by the synset is selected for by the verb, and a word node has the value true

if the word can appear as an argument of the verb.

Each variable A, with parents B1; : : : ;Bn, has associated with it a conditional probability table

(CPT), which stores the probabilities p(AjB1; : : : ;Bn). Ciaramita and Johnson call these probabil-

ities the priors, and they are defined according to the following principles. First, it is unlikely that

a verb selects for a concept, a priori



2.1. Lexical knowledge acquisition 17

2.1.2 Distributional similarity

The use of distributional similarity is an important alternative to using a man-made hierarchy for

generalisation. The relevant literature is large, and we will only describe some representative

approaches. Chapter 14 of Manning and Schütze 1999 also gives an overview of this area. After

describing a number of approaches, we will consider the advantages and disadvantages of using

distributional similarity, compared with using a man-made hierarchy for generalisation.

The philosophy underlying distributional approaches is that the probability of a rare event can

be estimated by considering “similar” events that have occurred in the data. An example given by

Lee and Pereira (1999) is that it is possible to infer that the bigram “after ACL-99” is plausible,

even if it does not occur in the data, if “after ACL-95” does occur in the data. This assumes that

“ACL-99” and “ACL-95” have similar cooccurrence distributions, or, in other words, that “ACL-

99” and “ACL-95” tend to occur in the same contexts.

Similar events are often organised into clusters, according to some probabilistic measure of

similarity. However, as Lee and Pereira (1999) point out, distributional approaches do not have to

explicitly create clusters. Dagan, Lee, and Pereira (1999) estimate “cooccurrence probabilities”

by taking the nearest cooccurrences to the target cooccurrence and averaging their probabilities.

The cooccurrence can be between the head words in a syntactic construction, or between words in

an n-gram, for example. Lee and Pereira (1999) call this approach nearest-neighbors averaging.

Following Dagan et al. (1999), let W (w1;w
0

1) be a measure of the similarity between words w1

and w0

1, and let S(w1) be the set of words most similar to w1; then p(w2jw1) can be estimated as

follows:

p̂(w2jw1) =
∑w0

12S(w1)
W (w1;w

0

1)p(w2jw
0

1)

∑w0

12S(w1)
W (w1;w

0

1)
(2.14)

The numerator is the probability of w2 given a nearest neighbour of w1 (weighted by a function

of the similarity between w1 and the neighbour) summed over all the nearest neighbours; and the

denominator is a normalising constant.

There are a number of similarity measures, so rather than attempt to describe them all, we

use one measure based on the Kullback-Leibler (KL) divergence as an example.8 To measure the

dis-similarity between two words, w1 and w0

1, the KL divergence can be applied as follows:

D(w1kw
0

1) = ∑
w2

p(w2jw1) log
p(w2jw1)

p(w2jw
0

1)
(2.15)

D(w1kw
0

2w
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Clustering

Pereira, Tishby, and Lee (1993) acquire clusters of nouns for the direct object position of verbs.

The clustering is “soft”, in that each word belongs to a cluster according to a cluster membership

probability, and it is also “hierarchical”, in that the clustering algorithm works in a top-down,

iterative fashion, splitting existing clusters at each iteration. The decision to keep two nouns in the

same cluster is based on the difference between their conditional verb distributions, pn(v), which

is measured using the KL divergence.

In contrast, Brown, Della Pietra, deSouza, Lai, and Mercer (1992) adopt a bottom-up iterative

approach, in which initially the clusters are the individual words themselves, and the decision to

merge two classes is based on the minimal loss of mutual information. The clustering is “hard”,

in that a noun either belongs to a cluster or it does not, and there is no notion of degrees of

membership. The clustering model was used to try and improve a language model, although no

improvements in perplexity were gained by using a cluster-b
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Mutual Information

The mutual information between two words x and y (in some cooccurrence relation) is defined as

follows:

I(x;y) = log2

p(x;y)

p(x)p(y)
(2.18)

The mutual information described here is often referred to as pointwise mutual information, to

distinguish it from the notion used in information theory. Pointwise mutual information is derived

from the information-theoretic notion, but the information-theoretic version is defined as an av-

erage over random variables. Also, the pointwise version has less of a theoretical basis; Jelinek

(1997) warns that interpreting I(x;y) as the mutual information between x and y gives “only an

intuitive interpretation.” (p.134)
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f (w1;w2) f (:w1;w2)

f (w1;:w2) f (:w1;:w2)

Table 2.1: Contingency table for the bigram w1w2

f (w1;w2) is the number of times w2 follows w1 in the data, and f (:w1;w2) is the number of times

w2 follows a word other than w1 in the data. (The other frequencies in the table are defined anal-

ogously.) The null hypothesis corresponding to the table is that w1 and w2 appear independently

of each other, and a statistic such as chi-squared can be used to determine how likely the null hy-

pothesis is to be true. If the chi-squared statistic has a high value, then this gives strong evidence

that the null hypothesis is false, and that w1 and w2 are highly associated. Thus bigrams with high

chi-squared scores should correspond to highly associated pairs of words or collocations.

The chi-squared statistic that is usually encountered in text books is the Pearson chi-squared

statistic. However, the problem with this statistic, as Dunning demonstrates, is that it can over-

estimate the significance of rare events. This means that the bigrams producing the highest scores

are often based on very low counts, which makes the test unreliable. Most of the top ranked

bigrams in Dunning’s experiments occurred only once in the data, and among the highest ranked

bigrams were cases like practically drawn, instance 280 and scanner cash, which are hardly highly

associated pairs of words. As a remedy to this problem, Dunning considers the log-likelihood ratio

statistic, denoted G2, which does not over-estimate the significance of rare events in the same way.

The top ranking bigrams produced according to this statistic were much more intuitive.

Dunning’s analysis of his results is based on the following claim: that the sampling distribution

of G2 approaches chi-squared quicker than the sampling distribution of X2. However, this part of

Dunning’s analysis is debatable, since Agresti (1996) makes exactly the opposite claim:

The sampling distributions of X2 and G2 get closer to chi-squared as the sample size

n increases : : : The convergence is quicker for X2 than G2. (p.34)

Given Aresti’s comments, a more likely explanation lies in the conservative nature of G2, which

means that X2 is more likely to return a significant result for a table based on small counts. This

would explain Dunning’s results, in which pairs of words occurring infrequently in the corpus

obtain high scores according to X2 but not G2. These issues will be discussed further in Chapter 3,

where a chi-squared test is used as part of a procedure for selecting a suitable level of abstraction

in WordNet.

Pedersen (1996) suggests using Fisher’s exact test (Agresti 1996) for bigram discovery, rather

than a chi-squared statistic. The advantage of Fisher’s exact test is that it can be applied to any

contingency table, regardless of the size of the counts, and the result will be reliable. However, the

test is computationally expensive, since it involves computing every contingency table that could

have led to the marginal totals observed in the sampled table. (The marginal totals are not shown

in Table 2.1, but are simply the totals obtained by summing the scores in each row and column.)

In addition, the results obtained by Pedersen for the exact test did not differ greatly from those

obtained for the log-likelihood statistic, and so it is not clear that the benefits of using the test

outweigh the additional computational burden.

2.1.4 Smoothing for probability estimation

Many of the smoothing techniques used in corpus-based NLP were developed for language mod-

elling, and so to demonstrate some of the most widely used techniques, we consider the problem

of estimating an n-gram model. More specifically, the problem is to estimate the probability of

a word conditional on the previous n� 1 words: p(wijwi�n+1 : : :wi�1). A maximum likelihood
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As an example, consider using 2.22 to estimate p(hfoxijrun; subj) and p(harpetijrun; subj), as-

suming that neither hfoxi nor harpeti appear with run in the data. Unlike additive smoothing,

the two unseen senses are unlikely to receive the same estimate, since the estimates based on less

context are unlikely to be the same for the two senses. However, hfoxi will not necessarily receive

a higher estimate than harpeti; the problem is that the estimates based on less context ignore the

verb. In contrast, the estimation method presented in Chapter 3 is able to make use of the verb, by

determining whether semantically similar senses to hfoxi and harpeti appear as subjects of run.

Good-Turing

Another widely-used technique is the Good-Turing method (Good 1953), which states that an

n-gram that has occurred r times in the data should have an adjusted frequency r�, where

r� = (r+1)
E(Nr+1)

E(Nr)
(r � 1) (2.23)

E(Nr) is the expected number of n-grams that occur r times in the data. Relative frequencies based

on the r� values can be used to estimate the probabilities. Note that 2.23 only applies to values

of r greater than zero; a further result of Good 1953 is that the total probability mass assigned to

unseen objects is E(N1)=N, where N
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2.2 Applications

This section describes previous work on structural disambiguation, which is a problem considered

later in the thesis. The section describes work on PP-attachment, and then work that has considered

the more general problem of parse selection. Not all previous approaches are considered, since the

literature in both cases is very large, and we describe only those approaches that are most relevant

to the work in this thesis.

2.2.1 Structural disambiguation: PP-attachment

The type of structural ambiguity that has been most covered in the literature is PP-attachment am-

biguity. This is a pervasive form of ambiguity, and a potentially damaging one, in that increasing

the number of PPs in a sentence can lead to a combinatorial explosion in the number of possible

analyses (Church and Patil 1982). A number of early studies in the psycholinguistics domain sug-

gested possible strategies for resolving attachment ambiguities. Two of the most cited studies are

those of Kimball (1973), who suggested that a constituent tends to attach to another constituent

immediately to its right (right association), and Frazier (1978), who suggested that there is a pref-

erence for attachments that lead to the parse tree with the fewest nodes (minimal attachment).

However, later work (Whittemore, Ferrara, and Brunner 1990; Taraban and McClelland 1988)

demonstrated that lexical information is a better predictor of attachments, and most of the recent

corpus-based approaches to structural disambiguation, including PP-attachment, have been based

on lexical associations.

The PP problem that is usually addressed only considers sequences of the following form:

(verb, direct object of verb, preposition, object of preposition). Moreover, only the heads of the

noun phrases are usually considered. The problem can then be characterised as as taking a four-

tuple, (v;n1;pr;n2), and deciding whether the PP attaches to v or n1, as in the much used example

(see, man, with, telescope). Note that this is an easier problem than the most general form of

PP-attachment, since only two possible attachment sites are being considered. In the general case,

there may be more than two sites. Consider this example from Hindle and Rooth (1993):

(2.24) NBC was so afraid of hostile advocacy groups and unnerving advertisers that it shot its

dramatization of the landmark court case that legalised abo
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else

p̂(Ajv;n1;pr;n2) = 1 if A is noun attach, 0 if A is verb attach

An interesting result of the paper is that the optimum value for k was found to be zero at all

stages. This means that, even if a context occurs only once in the training data, it is better to

use an estimate based on that context, rather than back off to another level. We present a related

result in Chapter 6, regarding the use of low count events in the training data. We find that,
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simply compares probabilities corresponding to the possible attachment sites. An advantage of
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2.2.2 Parse selection

The problem of parse selection is to select the correct parse for a sentence from a number of al-

ternatives. As Collins (1999; p.6) points out, this can be an “astonishingly severe problem” in

broad domains such as the Wall Street Journal (WSJ). Collins cites a number of factors that are

responsible for the severity of the problem: the need for a large grammar to obtain broad coverage;

long sentences being typical in a broad domain; and many common sources of syntactic ambigu-

ity, such as PP-attachment, leading to exponential growth in the number of analyses (relative to

sentence length). There are many examples in the literature of ordinary looking sentences having

hundreds, sometimes thousands, of different analyses according to some grammar. The parser of
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Other approaches to statistical parsing

Briscoe and Carroll (1993) define a probability model based on the moves of an LR parser (see

also Briscoe and Carroll 1995, Carroll and Briscoe 1996, Carroll, Minnen, and Briscoe 1998). The

grammar underlying the parser is a hand-written phrase structure grammar. The probability model

is structural, and does not account for the probabilities of lexical dependencies. However, more

context is taken into account than a PCFG, since the history that is considered at each parsing de-

cision is conditional on the LR state, which can encode information in addition to the non-terminal

being expanded. A dependency-based evaluation in Carroll, Minnen, and Briscoe 1999 shows that

the latest version of the parsing system can identify some grammatical relations (such as subject

and direct object) with high accuracy, but is less successful with other relations (such as the sec-

ond object in a ditransitive construction and indirect object). The accurate identification of some

relations, such as those corresponding to PP-attachment, is likely to require a more lexicalised

probability model.

A current version of the Briscoe and Carroll parser is used throughout this thesis. The parser

is highly robust, and has been used to provide large amounts of training data for the experiments

reported in Chapters 5 and 6. It was also used for the parse selection experiments in Chapter 5, in

order to provide the possible parses for a set of test sentences. A feature of the latest version is that

the output is in the form of head dependency relations, which were used to create a dependency

structure for each possible parse. In addition, the performance of the parser provided a useful

benchmark against which to measure the performance of the dependency model.

Hektoen (1997) defines a probability model over logical forms, rather than syntactic structures,

arguing that semantic relations are the key to accurate parse selection. A hand-written grammar

was developed especially for this work, so that the requisite logical forms could be derived. A

further novel aspect of the approach is that Bayesian estimation is used to estimate the parameters.

Hektoen did attempt a direct comparison with SPATTER and Collins’ conditional model, although

the use of a hand-written grammar meant that only a subset of sentences from the Penn Treebank

could be parsed. Also, Hektoen argues that the Parseval measures are not very suitable for his



Chapter 3

Class-based Probability Estimation: how to

select a suitable class

3.1 Problem specification

The problem addressed in this chapter is how to estimate p(cjv;r), where c is a sense in a semantic

hierarchy, v is a predicate and r is an argument position. The term ‘predicate’ is used loosely here,
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<life_form>

<plant>

<object>

<entity>

<substance>

<mushroom>

<artifact>

<food><fluid><solid>

<animal>

<lobster>

<root>

<space> <time> <set>

<abstraction>
<possession>

<phenomenon>

<psychological_feature>

<group>

<event>

<state>

<act>

<line>

<cord>

<rope>
<dish>

<nutriment>

<pizza>

<fare>

<sphere>

Figure 3.1: Part of the WordNet hierarchy

concept c, and n(n) = fc jn 2 syn(c) g to denote the set of concepts that can be denoted by the

noun n.
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non-verbal predicates such as adjectives as well as verbs.
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p(vjc0;r) = p(c0jv;r)
p(vjr)

p(c0jr)
(3.4)

=

p(vjr)

p(c0jr)
∑

c002c0

p(c00jv;r) (3.5)

=

p(vjr)

p(c0jr)
∑

c002c0

p(vjc00;r)
p(c00jr)

p(vjr)
(3.6)

=

1

p(c0jr)
∑

c002c0

k p(c00jr) (3.7)

=

k

p(c0jr)
∑

c002c0

p(c00jr) (3.8)

= k (3.9)

Figure 3.2: Proof of proposition 3.3

compare the probabilities p(vjc0i;r) only.) The proof of proposition 3.10 is given in Figure 3.3, and

is explained in detail below.

The first line (3.12) applies Bayes theorem to the probability p(vjc0;r). Line 3.13 rewrites the

probability p(c0jv;r) as the sum of the probabilities of the sets dominated by the daughters of c0,

∑i p(c0ijv;r), plus the probability of c0 itself, p(c0jv;r). This equality holds because the probability

of a set of concepts, p(c0jv;r), has been defined in 3.1 as the sum of the probabilities of the

concepts in the set. However, note that the equality only holds in the tree case, and this is where

the proofs in Figures 3.2 and 3.3 differ. For a DAG, the probability of a set of concepts dominated

by c0 cannot be obtained by summing the probabilities of the sets dominated by the daughters of

c0 (plus the probability of c0
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p(vjc0;r) = p(c0jv;r)
p(vjr)

p(c0jr)
(3.12)

=

p(vjr)

p(c0jr)

 

∑
i

p(c0ijv;r)+ p(c0jv;r)

!

(3.13)

=

p(vjr)

p(c0jr)

 

∑
i

p(vjc0i;r)
p(c0ijr)

p(vjr)
+ p(vjc0;r)

p(c0jr)

p(vjr)

!

(3.14)

=

1

p(c0jr)

 

∑
i

k p(c0ijr)+ k p(c0jr)

!

(3.15)

=

k

p(c0jr)

 

∑
i

p(c0ijr)+ p(c0jr)

!

(3.16)

= k (3.17)

Figure 3.3: Proof of proposition 3.10
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ci f̂ (ci;run; subj) f̂ (ci; subj) f̂ (ci; subj) =

� f̂ (ci;run; subj)
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Algorithm top(c;v;r):

top 

sig result false

comment parentmin gives lowest G2 value, G2
min

while not sig result & top 6= hrooti do

G2
min ∞

for all parents of top do

calculate G2 for sets dominated by children of parent

if G2
< G2

min

then G2
min G2

parentmin parent

end

if chi-squared test for parentmin is significant

then sig result true

else move up to next node: top parentmin

end

return top

Figure 3.4: An algorithm for determining top(c;v;r).

top(c;v;r).

Figure 3.5 gives an example of the procedure at work. Here, top(hsoupi;stir;obj) is being

determined. The example is based on data from a subset of the BNC, which had 303 cases of an

argument in the object position of stir. The G2 statistic is used, together with an α value of 0:05.

Initially, top is set to hsoupi, and the probabilities corresponding to the children of hdishi are

compared: p(stirjhsoupi;obj), p(stirjhlasagnei;obj), p(stirjhhaggisi;obj) and so on for the rest

of the children. The chi-squared test results in a G2 value of 14:5, compared to a critical value

of 55:8. Since G2 is less than the critical value, the procedure moves up to the next node. This

continues until a significant result is obtained, which first occurs at hsubstanei when comparing

the children of hobjeti. Thus hsubstanei is the chosen level of generalisation.

Before giving some example levels of generalisation, it is worth making some comparisons

with the other WordNet approaches. First, note that we have not made a uniform distribution as-

sumption, as Li and Abe do (equation 2.13). Furthermore, the problem described in Section 2.1.1,

stemming from the fact that Li and Abe compare frequencies in order to generalise, does not arise.

This problem is avoided because we compare probabilities conditioned on sets of concepts, rather

than the frequencies of senses. And finally, the generalisation procedure is able to return a suitable

class for arguments that are negatively associated with some predicate. (Section 2.1.1 explained

how such arguments cause a problem for Resnik’s approach.) To see why, consider applying the

generalisation procedure to hloationi in the object position of eat; the procedure is unlikely to

get as high as hentityi (as we argued Resnik’s approach is likely to do), since the probabilities

corresponding to the daughters of h



42 Chapter 3. Class-based Probability Estimation: how to select a suitable class

haggislasagne

dish

nourishment

food

fare beverage

coursemeal

substance

object

fluid poison

artifactground

entity

soup
G2: 14:5, critical value: 55:8

G2: 5:4, crit val: 16:9

G2: 5:5, crit val: 16:9

G2: 29:9, crit val: 58:1

G2: 141:1, crit val: 37:7

Figure 3.5: An example generalisation: determining top(hsoupi;stir;obj)

3.5 Example generalisation levels
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(c;v;r), f (v;r) α

(hoffeei;drink;obj) 0:0005 hoffeeihBEVERAGEihfoodi : : : hobjetihentityi

0:05 hoffeeihBEVERAGEihfoodi : : : hobjetihentityi

f (drink;obj) = 849 0:5 hoffeeihBEVERAGEihfoodi : : : hobjetihentityi

0:995 hoffeeihBEVERAGEihfoodi : : : hobjetihentityi

(hhotdogi;eat;obj) 0:0005 hhotdogihsandwihihsnak foodihDISHi : : : hR215 0.12 Tf
1 0 0 -1 202.319 678.1 Tm
(:)Tj
/R82 9.96264 Tf
1 0 0 1 205.079 678.1 Tm
[(0)-5.8887(0)-5.89115(0)
(:)Tj
/R82 9.962.96264 Tf
1 0 0 1 205.079 a.1 Tm
[(0)-5.88993]TJ
/R215 0.12 T910 /R121 0.12 Tf
3.83984 00 Tf
8R440 0.tdogi
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α 100% 50% 10% 1%

0:0005 3:3 3:9 5:0 5:6

0:05 2:8 3:5 4:6 5:6

0:5 2:1 2:9 4:1 5:4

0:995 1:2 1:5 2:6 3:9

Table 3.5: The extent of generalisation for different values of α and sample sizes

α G2 X2

0:0005 3:3 3:0

0:05 2:8 2:5

0:5 2:1 1:9

0:995
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G2 statistic. The advantage of this test is that it can be applied to any contingency table, irrespective

of the size of the counts. The main disadvantage is that it is computationally expensive, especially

for large contingency tables.

What we have found in practice is that applying the chi-squared test to tables with low counts

tends to produce an insignificant result, and the null hypothesis is not rejected. This is especially

true for the more conservative G2 statistic. The consequences of this for the generalisation pro-

cedure are that low count tables tend to result in the procedure moving up to the next node in

the hierarchy. This behaviour is clearly demonstrated in Tables 3.4 and 3.5. But given that the

purpose of the generalisation is to overcome the sparse data problem, this behaviour is desirable,

and therefore we do not modify the test for tables with low counts.

The next issue to consider is which statistic to use. Dunning (1993) argues that G2 is more

suitable for corpus-based linguistics than X2, and Chapter 2 described Dunning’s experiment com-

paring the use of X2 and G2 to identify highly associated bigrams. Dunning’s claim is that, for

small samples, the sampling distribution of G2 is a better approximation to the chi-squared dis-

tribution than the sampling distribution of X2. However, in Chapter 2 we presented a quotation

from Agresti 1996 which contradicts this claim. A more likely explanation lies in the conservative

nature of G2, which means that X2 is more likely to return a significant result for a table based

on small counts. This would explain Dunning’s bigram results, in which pairs of words occurring

infrequently in the corpus obtain high scores according to X2 but not G2.

Note that, for some applications, it may make little difference to the performance whether G2

or X2 is used. The results for a PP–attachment task described in Chapter 6 are very similar for both

statistics. In fact, the use of X2 may even lead to better results for some applications. The results

of a pseudo disambiguation task, also described in Chapter 6
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plenty of counts; and, since the point of this work is to overcome the sparse data problem, the

second consideration should override the first. The chi-squared test has this overriding effect

built in automatically (particularly when using the conservative
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This may appear to be a crude solution to the problem of ambiguous data, but, in practice, it works

surprisingly well. The reason is that counts for sets of concepts tend to accumulate in the right

places. To see why, consider this example adapted from Resnik 1998. (Resnik notes that a similar

point is made by Yarowsky (1992).) Consider estimating probabilities for the object position of

the verb drink, and suppose that drink wine and drink water occur as part of the data. The word

water is a member of seven senses in WordNet, and wine is a member of two senses. Thus, for

these data items, splitting the count equally leads to each sense of water receiving 0:14 counts

and each sense of wine 0:5 counts. But note that, with regard to sets of concepts, only those sets

containing senses of both wine and water, such as hbeveragei, will accumulate counts. The counts

for the incorrect senses will be randomly dispersed throughout the hierarchy as noise, and areas

where counts would be expected to accumulate, such as under hbeveragei in this example, will

receive the majority of the overall count. As will be shown later, this accumulation effect means

that performance in applications can be good, even if this simple estimation technique is used.

However, there is an obvious problem with this approach: although counts for sets tend to

accumulate in the right places, counts can be greatly underestimated. In the previous example,

f̂ (hbeveragei;drink;obj) is incremented by only 0:64 counts from the two data instances, rather

than the correct value of 2. In addition, as Resnik himself notes, the accumulation process has

less effect on sets of concepts low down in the hierarchy, since here the counts have had less

chance to accumulate. The example Resnik gives is for blow nose. In this case, counts would be

expected to be higher for the set dominated by the bodily sense of nose, rather than the aircraft

sense. However, since both senses are low down in the hierarchy, splitting counts equally is likely

to lead to a similar count for each set. For the same reason, counts for individual concepts, as

opposed to sets of concepts, are likely to be inaccurate.

In response to this, we note that the accumulation of counts leads to an obvious strategy: use

the fact that correct senses are likely to be members of sets where counts have accumulated as a

way of re-distributing the count. Continuing with the drink wine example, wine has a beverage

sense and a colour sense in WordNet. If the above strategy is used, equal counts will be given

to each sense on the first iteration, but, on subsequent iterations, more of the count will be given

to the beverage sense. This is because counts would accumulate under hbeveragei for the object

position of drink and not under holouri.

One issue to consider is how to determine a representative set for a concept. We have been

assuming that hbeveragei and holouri are suitable for the two senses of wine, but a procedure

is needed which determines this automatically. The procedure needs to find a hypernym for each

alternative sense, such that the hypernym is high enough for counts to have accumulated in the

set dominated by the hypernym; however, it should not be so high that the alternative senses

cannot be distinguished. An example of a hypernym that is too high is hrooti, the notional root

of the hierarchy, since if hrooti were chosen for both senses of wine, there would be no way to

distinguish between the senses. Another reason not to go too high is that the sets need to be,

in some sense, representative of the senses. Suppose eat chip occurs in the data, and the food

sense of chip and the electronic sense need to be distinguished. It would not be appropriate to

represent the electronic sense using hentityi
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Â
m
(C;v;r) =

p̂m
(Cjv;r)

p̂m
(Cjr)

p̂m
(Cjv;r) =

f̂ m
(C;v;r)

f̂ (v;r)

p̂m
(Cjr) =

∑v2V
f̂ m

(C;v;r)

∑v2V
f̂ (v;r)

f̂ m
(C;v;r) = ∑

c2C

f̂ m
(c;v;r)

Figure 4.2: Estimates for calculating Â
m
(C;v;r) for a set of concepts C; V is the set of verbs in

the data

hentityi is not homogeneous with respect to the object position of drink: some entities are drunk,

some are not. In contrast, the set habstrationi is fairly homogeneous in that, on the whole, kinds

of abstraction are rarely drunk.

The set hbeveragei is also homogeneous, which is a suitable representative for the beverage

sense. Note that the two sets habstrationi and hbeveragei are also ‘maximally homogeneous,’

in that the sets dominated by the parents of hbeveragei and habstrationi, hliquidi and hrooti

respectively, are not themselves homogeneous. This motivates the idea that we should be looking

for maximally homogeneous sets, maximal because we want to allow counts to accumulate and

noise to be dispersed. The problem with using holouri as a representative of hwinei is that

holouri is not high enough for this dispersal to have occurred.

One way to recognise that hliquidi is not homogeneous is to note that the sets dominated by

the daughters of hliquidi are associated to differing degrees with drink. Some liquids are drunk,

such as beverages, liquor and water, but some are not, such as ammonia, antifreeze and sheep
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the verb. Thus it appears that the procedure can be applied directly to the problem of determining

[c;v;r℄.

However, there are some differences between the problems being addressed in this and the

previous chapter. In the previous chapter the problem was to find a generalisation level that would

lead to a reasonable probability estimate. In this chapter the problem is to find a level where counts

have accumulated and the noise dispersed sufficiently. A solution to both problems lies in finding

homogeneous sets; the difference lies in the degree of homogeneity that is likely to be optimal

in each case. For the probability estimation problem, it may be that the difference in association

norms needs to be relatively small for a class-based probability estimate to be a useful estimate.

Results presented in Chapter 6 suggest that, for some disambiguation tasks, this is indeed the case.

Another way to think of this is that, for some tasks, the optimal level of generalisation is quite low

in the hierarchy, on the whole. In contrast, the re-estimation problem is likely to favour a level of

generalisation that is quite high, on the whole, since it is here that counts have accumulated and

noise dispersed.

Despite these differences, the procedure can be adapted to both problems. The degree of

homogeneity required can be controlled by the parameter α, the level of significance of the chi-

squared test. The value of α controls the overall level of generalisation: a high value for α results

in a low level of generalisation, on the whole, and a low value for α results in a high level of

generalisation. Results from the previous chapter clearly demonstrate this. One way to set a value

for α would be to estimate counts using a range of α values, and use a held-out test set to choose

those counts that give the best performance on the task in hand.

Another useful feature of the procedure, within the context of the re-estimation problem, is

that it employs a significance test to find homogeneous sets. This implies that the procedure

automatically finds areas where counts have accumulated, since it is only here that there will be

enough data to return a significant result for the chi-squared test. This point is especially true when

the more conservative G2 statistic is used and a low value for α.

As a final comment, a point of clarification is needed. The previous chapter showed that the

chosen level of generalisation is dependent on the size of the data sample, as well as on the value

of α. Thus the notion of homogeneity being used here is not an absolute notion, but a relative

one, relative to the sample. If the procedure determines a maximally homogeneous set that does

not accord with intuition, this should not be automatically considered a failure. A comment in

Clark and Weir 1999 states that hfoodi is heterogeneous with respect to the object position of
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p̂(hfoodijeat;obj) =

f̂ (hfoodi;eat;obj)

f̂ (eat;obj)

= 711=2;045

= 0:348

p̂(hfoodijobj) =

f̂ (hfoodi;obj)

f̂ (obj)

= 16;880=1;508;950

= 0:0112

Â(hfoodi;eat;obj) = 0:348=0:0112

= 31

Figure 4.4: Calculation of Â(hfoodi;eat;obj)

high value for f̂ (hentityi;r), and so p̂(cajolejhentityi;obj) is not over-estimated.

The conclusion is that, if the association norm is to be applied appropriately, it should be

applied to frequent verbs or to sets for which f (C;r) is reasonably high; however, since the re-

estimation procedure relies on using sets where plenty of counts have accumulated, this should

not be a problem.

4.5 Evaluation

There are two evaluations in this section.4
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become

establishment

it

(ncsubj,_,_) (clausal,_,_)

(ncsubj,_,obj)

(cmod,until,_)(cmod,when,_)

(arg_mod,by,subj)

acquire corporationdie

(ncsubj,_,_)

proprietorproprietor

Figure 5.1: Example dependency structure for the sentence: When the proprietor dies, the estab-

lishment should become a corporation until it is acquired by another proprietor.

become until acquire (the establishment should become a corporation until it is acquired

by another proprietor). Here, become is the head in both cases, and die and acquire are

dependents. The prepositions when and until introduce the dependents.

� nsubj denotes a non-clausal subject. The nsubj examples simply encode a head and de-

pendent, except that the passive it is acquired is recognized as such by the symbol obj. This

appears in the triple labelling the edge (acquire,it), and indicates that it is an underlying

object of acquire.

� arg mod
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Generate the non-dependent heads, Θ
for each head in Θ do

Generate a bag of grammatical relations

for each relation in bag do

Generate a transformation

Generate a dependent and type introducing the dependent

end

end

until the leaves of the generated structure are all null dependents do

for each non-null leaf dependent do

Generate a bag of grammatical relations

for each relation in bag do

Generate a transformation

Generate a dependent and type introducing the dependent

end

end

end

Figure 5.2: Sequence of decisions generating a dependency structure

The dependency structure with the highest probability is chosen as the correct structure (together

with the corresponding parse, if necessary). The conditioning context d1 : : :di�1 is known as the
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p(d; tjh;r) where d is a nominal dependent

The probabilities corresponding to the above examples are:

� p(tax-payer,onjplace; iobj)

� p(March,beforejreceive;nmod)

� p(London,injmeeting;nmod)

Again, the sense of d is chosen which maximises the probability estimate, and p(c; tjh;r) is used

as a proxy for p(d; tjh;r), where c is determined as follows:

c = arg max
c02n(d)

psc(c
0

; tjh;r) (5.5)

The class-based approach can be used to obtain psc(c
0

; tjh;r), by first applying Bayes’ theorem,

and then conditioning on an appropriate set of concepts, as before. The only difference is that the

conditional probability of h is now joint with t:

p(c0; tjh;r) = p(h; tjc0;r)
p(c0jr)

p(hjr)
(5.6)

� p(h; tjc
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The set c00 is obtained by applying the procedure described in Chapter 3, and the probability

p(djc00;r) is estimated using relative frequencies. If the head does not appear in WordNet, an

estimate of p(djhrooti;r)
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dobj iobj

arg_mod

dependent

xcompobj2 ccomp

xsubj csubj clausal

mod arg

compsubj

objncsubj

xmod cmod

aux

ncmod detmod

Figure 5.5: The grammatical relations used in the implementation

5.3 Implementation

5.3.1 The parser and grammatical relations

The parser used for the evaluation is a more developed version of that described in Carroll and

Briscoe 1996. This version is able to produce output in the form of grammatical relations, which

is the main reason the parser was chosen. The parser produces a set of parses for a sentence,

together with the corresponding sets of grammatical relations. Thus we were able to create a

dependency structure for each parse, and choose the parse with the most probable structure. A

further advantage in using this parser is that there exists a manually created test suite which uses

the same grammatical relation scheme as used by the parser (Carroll et al. 1998a, 1999); this test

suite was used for the evaluation.

The relations used by the parser can be arranged in a hierarchy, as shown in Figure 5.5. If the

parser is unable to determine the precise nature of the relation, and thus cannot return a relation

at a leaf node, a more generic relation can be returned. Each relation is described in detail in

Appendix A, based on the descriptions given in Carroll et al.
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(jnsubjj jontinue:6 VV0j jfailure:1 NN1j )

(jlausalj jontinue:6 VV0j jplae:8 VV0j)

(jnsubjj jplae:8 VV0j jfailure:1 NN1j )

(jdobjj jplae:8 VV0j jburden:11 NN1j )

(jiobjj jon:12 IIj jplae:8 VV0j jtax-payer:14 NN2j)

(jdobjj jdo:3 VD0j jthis:4 DD1j )

(jxompj jto:2 TOj jfailure:1 NN1j jdo:3 VD0j)

(jnmodj jburden:11 NN1j jdisproportionate:10 JJj)

(jnmodj jtax-payer:14 NN2j jFulton:13 NP1j)

(jdetmodj jburden:11 NN1j ja:15 AT1j)

(jauxj jontinue:6 VV0j jwill:16 VMj)



5.3. Implementation 71



72 Chapter 5. Integrating the Estimation Techniques into a Parse Selection System

obtained from John Carroll, who ran the parser over around 15 million words of the BNC, from

around 830;000 sentences. The parser output was in the same form as that given in Figure 5.6,

and the output was processed in the following way (the formulaic expressions, such as sums of

money, were found using simple regular expressions):

� 4-digit numbers beginning ‘1’ or ‘2’ were replaced with the word twelvemonth.

Numerical expressions were replaced with definite quantity.

Monetary expressions not in WordNet were replaced with sum of money.

Expressions denoting people not in WordNet (such as ‘Dr’) were replaced with someone.10

Expressions denoting companies not in WordNet (such as ‘Ltd’) were replaced with com-

pany.

� Verbs and prepositions were reduced to lower case.

� All words were lemmatized.

The formulaic expressions were replaced with these particular words because each word has only
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iobj

dependent

csubj clausal

arg

obj

subj comp

arg_mod

ncsubj

dobj obj2

mod detmod aux

Figure 5.8: Dependency probabilities, by relation, that can be estimated using WordNet

is half covered by a box because not all of the mod cases can be estimated using WordNet. For the

test suite used for the evaluation, approximately 60% of the grammatical relations correspond to

parameters that can be estimated using WordNet. The parameters corresponding to the remaining

relations were estimated using the linear interpolation method.

5.4 Evaluation

The test suite consists of 500 sentences taken from the Susanne corpus, covering a number of

written genres and manually annotated with grammatical relation information.
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Relation # occurrences % occurrences

dependent 6537 100:0

mod 3916 59:9

nmod 2434 37:2

xmod 129 2:0

mod 208 3:2

detmod 1124 17:2

arg mod 41 0:6

arg 2037 31:2

subj 1047 16:0

nsubj 1039 15:9

xsubj 5 0:1

subj 3 0:0

omp 990 15:1

obj 586 9:0

dobj 409 6:3

obj2 19 0:3

iobj 158 2:4

lausal 404 6:2

xomp 323 4:9

omp 81 1:2

aux 379 5:8

onj 164 2:5

Table 5.1: Frequency of each type of relation in the test suite

structures. The model is likely to prefer incomplete structures with a small number of relations,

because in these cases less probabilities are multiplied together to get a total probability for the

dependency structure.

The dependency structures were processed in similar ways to the data, in that each word was

lemmatized, and formulaic expressions were replaced with words in WordNet, as described in

Section 5.3.2. Because there is only a small amount of data in the test set, we did not use any

of it as held-out data, and the various parameters were selected by hand. The parameters δ and

ε, described in Section 5.2.2, were set to 1;000 and 50 respectively, and the level of significance

for the chi-squared test, α, was set to 0:
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Relation Precision Recall F-score #GRs

(%) (%)

dependent 72:9 73:6 73:3 6590

mod 76:7 69:2 72:8 3531

nmod 76:0 65:4 70:3 2091

xmod 63:3 24:0 34:8 49

mod 61:5 26:9 37:5 91

detmod 93:0 91:2 92:1 1102

arg mod 0.0 0.0 0.0 0

arg 65:6 81:0 72:5 2518

subj 75:0 83:2 78:9 1162

nsubj 79:1 83:8 81:4 1101

xsubj 100:0 20:0 33:3 1

subj 0.0 0.0 0.0 12

omp 57:5 78:7 66:4 1356

obj 55:7 79:7 65:6 838

dobj 78:3 82:2 80:2 429

obj2 27:8 79:0 41:1 54

iobj 32:7 73:4 45:2 355

lausal 60:2 77:2 67:7 518

xomp 80:
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The treatment of word sense ambiguity is another area that could be improved. Currently, a

rather cavalier approach is taken, which is to select the sense that maximises the relevant probabil-

ity estimate. One promising approach is to try and integrate the word sense disambiguation into

the parsing model, and perform the two simultaneously, as Bikel (2000) has attempted to do.

A tentative conclusion of this chapter is that the use of lexical sense preferences, or selectional

preferences, alone is unlikely to lead to a highly accurate parse selection system. Even the suc-

cessful statistical parsing models, such as those of Collins (1997) and Charniak (2000), which rely

heavily on lexical information, also make use of the structural properties of a parse. One way to

extend this work would be to try and combine the dependency model with the structural model of

Briscoe and Carroll.

As an evaluation of the class-based estimation technique, the results are inconclusive, since

the parse selection problem may not be a good way to isolate the performance of the WordNet

estimation techniques. In order to have a more focused evaluation, the method of estimation is

applied to two disambiguation tasks that can be tackled using only parameters relating to lexical

sense preferences; moreover, the parameters can be estimated using reliable data. These tasks are

presented in the next chapter.
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For these examples, it is hard to see that there is an ambiguity at all, but the attachment problem

assumes that any verb np prep np sequence results in an ambiguity. In 6.3, it is assumed that of

the company could attach to left; in 6.4, into a new world could attach to us; and in 6.5, despite the

speculation could attach to analysts.

Another reason why the telescope and stick examples are misleading is that they imply the PP-

attachment problem, as we have defined it, is harder than it really is. For these two examples, either

attachment results in a plausible semantic reading, and the correct reading depends on the wider

context. In a commonly cited paper, Altmann and Steedman (1988) argue that the resolution of

attachment ambiguities requires a model where the relevant entities are represented and reasoned

about. This argument led Hindle and Rooth (1993) to comment that, if this is typical of PP-

attachment ambiguities, then there is little hope of building computational models to solve the

problem, at least in the near future.

Clearly, some account of context is required for the resolution of some cases of attachment

ambiguity. However, this may only apply to a small subset of cases. The three treebank examples

can be resolved without resorting to the wider context; in fa
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The estimates psc(cv;prjv) and psc(cn1
;prjn1) are obtained using the method described in Chap-

ter 3. First, Bayes’ rule is applied, and then probabilities are conditioned on a set of concepts

where appropriate. The formulae are given for p(cv;pr
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α value % correct – G2 % correct – X2

0:0005 90:1 (764 cases) 89:9 (870 cases)



6.2. A pseudo disambiguation task 85

if max
c2n(n)

psc(cjv;
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Generalisation % correct av.gen. sd.gen

technique

Similarity-class

α = 0:0005 73:8 3:3 2:0

α = 0:05 73:4 2:8 1:9

α = 0:3 73:0 2:4 1:8

α = 0:75 73:9 1:9 1:6

α = 0:995 73:8 1:2 1:2

Low-class 73:6 0:9 1:0

MDL 68:3 4:1 1:9

Assoc 63:9 4:2 2:1

Table 6.6: Results for the pseudo disambiguation task

it as a noun, noun sense pair. For example, the two instances of coke in the synsets fcokeg and

fcocaine;cocain;coke;snow;Cg are treated as separate nouns. We use sep(n) to denote the set of

separate instances of n in WordNet.

Adopting the MDL approach, the disambiguation decision was made as follows (p̃ is used to

denote an estimate using the MDL approach):

if max
n02sep(n)

p̃(n0jv;

199(s)-291.66 Tm
[(1()-227.994(�)2.
2.15977 2.28008 Td
(2)Tj
/7969 0.12 Tf
5.28008 0 Td285ep)Tj
/R200 0.12 Tf
11.3996221091 Tf

p
(
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α value % correct – G2 % correct – X2

0:0005 73:8 (3:3) 74:1 (3:0)

0:05 73:4 (2:8) 73:8 (2:5)

0:3 73:0 (2:4) 74:1 (2:2)

0:75 73:9 (1:9) 74:3 (1:8)

0:995 73:8 (1:2) 73:3 (1:2)

Table 6.8: Disambiguation results for G2 and X2

important feature of these results is that the α values corresponding to the lowest scores lead to a

significant amount of generalisation. This explains why the α
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Conclusion

This Chapter considers each of the problems that have been addressed in this thesis, outlining the

proposed solution for each problem, together with the original contribution. The ways in which

the work could be extended are also considered. The discussion is organised by chapter.

Chapter 3 considered the problem of how to estimate the probability of a noun sense, given a

predicate and argument position. The proposed solution answers two questions: one, how to use

a class from WordNet to estimate the probability of a noun sense (thereby overcoming the sparse

data problem); and, two, how to select a suitable class to represent a sense. The second question

can be thought of as how to select a suitable level of generalisation in WordNet. The proposed

generalisation procedure employs a chi-squared test, and the level of significance of the test, α, is

treated as a parameter to be set empirically. Results were given showing how the chosen level of

generalisation depends on both the sample size and the value of α.

The generalisation procedure is arguably the most important contribution of the thesis. As

Resnik (1993a) comments, “It has been widely noted that the selection of an appropriate level of

abstraction is a difficult problem”. (p. 133) We have tried to devise a procedure that has a clearer

statistical interpretation than that of Resnik, and also one that overcomes some of the shortcomings

of Li and Abe’s approach, such as the uniform distribution assumption (2.13). An advantage of

our approach is that treating α as a parameter gives the procedure a level of flexibility, since α can

be set to produce a level of generalisation that is appropriate for the task in hand.

An alternative to using a single class to estimate the probability of a concept, which was

suggested by Jason Eisner at COLING 2000, is to use all the classes dominated by the hypernyms

of a concept. An estimate would be obtained for each hypernym, and the estimates combined

in a linear interpolation. An approach similar to this is taken by Bikel (2000), in the context of

statistical parsing.

Chapter 4 described an unsupervised reestimation algorithm for estimating sense frequencies.

We first explained how splitting the count for a noun equally among its senses works better than

might be expected (at least for the frequencies associated with sets of senses). The reason is

that counts tend to accumulate in the right places in WordNet, namely for sets of senses that

are positively associated with the predicate. This accumulation effect motivated the reestimation

algorithm, in which the count for a noun is split equally on the first iteration, but, on subsequent

iterations, more count is given to those noun senses that belong to ‘positively associated’ sets. A

feature of the algorithm is that it employs the generalisation procedure described in Chapter 3,

and this led to a new interpretation of the procedure, as one that finds sets of semantically similar

senses, or ‘homogeneous’ sets of senses, in the hierarchy. The results on a pseudo disambiguation

task showed that the reestimation can be beneficial in some cases.

The performance of the reestimation algorithm is limited by the fact that highly accurate WSD

is unlikely to be achieved using preferences alone. Other work that has attempted to use prefer-
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ences for sense disambiguation has achieved little success (Resnik 1997; Carroll and McCarthy

2000). Thus one way to further this work would be to see how other knowledge sources could

be used to aid the reestimation. The surrounding context of a noun is an obvious source of addi-
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the original method of Hindle and Rooth (1993). It was discovered that, in order to perform well,

the disambiguation method requires more training data than currently exist in treebanks, but that,

with appropriate amounts of data, the method is highly accurate. It was also shown that the gen-

eralisation procedure introduced in Chapter 3 outperforms a simple approach of choosing a fixed

level in the hierarchy.

A further evaluation using a pseudo disambiguation task showed that our class-based estima-

tion method outperforms two alternative approaches based on the work of Resnik (1993a) and Li

and Abe (1998). It was discovered that the alternative methods appeared to be over-generalising,

at least for this task. As we have argued, a useful feature of our estimation procedure is that the

level of significance used in the chi-squared test, α, can be used to guard against over or under-

generalisation. But even when the results did vary with α, our method was found to outperform

the alternatives across the whole range of α values.

A further useful result was that the performance on the task was at least as good when using

the Pearson chi-squared statistic as when using the log-likelihood chi-squared statistic. This result

is at odds with the currently accepted wisdom that the log-likelihood chi-squared statistic is a

better statistic for use in corpus-based NLP. We suggested an explanation for this finding which

also explains the results of Dunning (1993), who initially argued for the use of the log-likelihood

statistic.

An important question that has yet to be addressed in the literature is whether class-based

estimation methods perform better when the classes are automatically acquired or when they are

part of a man-made hierarchy. One way to investigate this would be to perform the pseudo disam-

biguation task, but using clustering algorithms to estimate the probabilities. Pereira et al. (1993)

and Rooth et al. (1999) have already used a similar task to evaluate their clustering algorithms;

the results depended on the number of clusters induced, and ranged between 75% and 80% for

both approaches, compared to the 73% reported here. Unfortunately, different test and training

data were used in each case, and so it is difficult to draw any conclusions from these results. A

related issue is how the structure of WordNet affects the accuracy of the probability estimates. We

have taken the structure of the hierarchy for granted, without any analysis, but it may be that an

alternative design would be more conducive to probability estimation.
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Appendix A

Grammatical Relations used in the Implementation

of the Parse Selection System

Some of the descriptions given here are taken directly from Carroll et al. 1998a, and the same

notation is used. Many of the examples also come directly from that paper.1

mod(type,head,dependent) The relation between a head and a modifier; type is used to indicate

the word introducing the dependent (where appropriate). Examples include the following:

mod( ,flag,red) a red flag

mod(with,walk,John) walk with John

mod(while,walk,talk) walk while talking

mod( ,Picasso,painter) Picasso the painter
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ncsubj(head,dependent,initial gr) The relation between a predicate and a non-clausal subject;

where appropriate, initial gr is obj after passivisation; for example:

ncsubj(arrive,John, ) John arrived in Paris

ncsubj(employ,Microsoft, ) Microsoft employed 10 C programmers

ncsubj(employ,Paul,obj) Paul was employed by IBM

c/xsubj(head,dependent,initial gr) The relation between a predicate and a clausal subject, con-
trolled from within, and from without, respectively; for example:

csubj(mean,leave, ) that Nellie left without saying good-bye meant she was angry

csubj(astonish,owe, ) that he owed anything would have astonished his mother

xsubj(require,win, ) to win the America’s Cup requires heaps of cash

dobj(head,dependent,initial gr) The relation between a predicate and a direct object; where

appropriate, initial gr is iobj after dative shift; e.g.

dobj(read,book, ) read books


